KANDA DATA

  • Home
  • About Us
  • Contact
  • Sitemap
  • Privacy Policy
  • Disclaimer
  • Bimbingan Online Kanda Data
Menu
  • Home
  • About Us
  • Contact
  • Sitemap
  • Privacy Policy
  • Disclaimer
  • Bimbingan Online Kanda Data
Home/How to perform multicollinearity test in R

Tag: How to perform multicollinearity test in R

Data Analysis in R

How to Analyze Multicollinearity in Linear Regression and its Interpretation in R (Part 2)

By Kanda Data / Date Apr 17.2023

Non-multicollinearity is one of the assumptions required in the ordinary least square (OLS) method of linear regression analysis. Non-multicollinearity assumption implies that there is no strong correlation among the independent variables in the equation.

Continue Reading

Categories

  • Article Publication
  • Assumptions of Linear Regression
  • Comparison Test
  • Correlation Test
  • Data Analysis in R
  • Econometrics
  • Excel Tutorial for Statistics
  • Multiple Linear Regression
  • Nonparametric Statistics
  • Profit Analysis
  • Regression Tutorial using Excel
  • Research Methodology
  • Simple Linear Regression
  • Statistics

Popular Post

January 2026
M T W T F S S
 1234
567891011
12131415161718
19202122232425
262728293031  
« Dec    
  • Reasons Why the R-Squared Value in Time Series Data Is Higher Than in Cross-Section Data
  • How to Create a Research Location Map in Excel: District, Province, and Country Maps
  • How to Determine the Minimum Sample Size in Survey Research to Ensure Representativeness
  • Regression Analysis for Binary Categorical Dependent Variables
  • How to Sort Values from Highest to Lowest in Excel
Copyright KANDA DATA 2026. All Rights Reserved