KANDA DATA

  • Home
  • About Us
  • Contact
  • Sitemap
  • Privacy Policy
  • Disclaimer
Menu
  • Home
  • About Us
  • Contact
  • Sitemap
  • Privacy Policy
  • Disclaimer
Home/normality test

Tag: normality test

Alternative to One-Way ANOVA When Data Are Not Normally Distributed

By Kanda Data / Date Jun 21.2025 / Category Comparison Test

If you’re conducting research to compare the means of more than two sample groups, one-way ANOVA is a commonly used statistical test. However, using this test comes with certain assumptions that must be met, specifically, that the data are normally distributed and homogenous.

Continue Reading

What Is a Residual Value in Statistics?

By Kanda Data / Date Jun 14.2025 / Category Statistics

If you’re working with data analysis using linear regression, especially the Ordinary Least Squares (OLS) method, it’s important to understand what a residual is. Why does this matter? Because several assumption tests in OLS regression rely heavily on residual values. That’s why you need a solid understanding of what residuals are and how to calculate them.

Continue Reading

Normality Test in Regression: Should We Test the Raw Data or the Residuals?

By Kanda Data / Date Jun 09.2025 / Category Assumptions of Linear Regression

When we choose to analyze data using linear regression with the OLS method, there are several assumptions that must be met. These assumptions are essential to ensure that the estimation results are consistent and unbiased. This is what we refer to as the Best Linear Unbiased Estimator (BLUE).

Continue Reading

Differences in Assumptions of Normality, Heteroscedasticity, and Multicollinearity in Linear Regression Analysis

By Kanda Data / Date Dec 30.2024 / Category Assumptions of Linear Regression

If you analyze research data using linear regression, it is crucial to understand the required assumptions. Understanding these assumption tests is essential to ensure consistent and unbiased analysis results.

Continue Reading

How to Perform an Independent Sample t-Test and Interpret the Results in R Studio

By Kanda Data / Date Oct 21.2024 / Category Data Analysis in R

The independent sample t-test in R Studio is used to compare two independent groups. Through this t-test, we can determine whether there is a significant difference between the means of the two groups being compared.

Continue Reading
Multiple Linear Regression

Linear Regression Residual Calculation Formula

By Kanda Data / Date May 27.2024

In linear regression analysis, testing residuals is a very common practice. One crucial assumption in linear regression using the least squares method is that the residuals must be normally distributed.

Continue Reading
Multiple Linear Regression

Assumption of Residual Normality in Regression Analysis

By Kanda Data / Date May 06.2024

The assumption of residual normality in regression analysis is a crucial foundation that must be met to ensure the attainment of the Best Linear Unbiased Estimator (BLUE). However, often, many researchers face difficulties in understanding this concept thoroughly.

Continue Reading
Assumptions of Linear Regression

Understanding the Essence of Assumption Testing in Linear Regression Analysis: Prominent Differences between Cross-Sectional Data and Time Series Data

By Kanda Data / Date Mar 19.2024

Linear regression analysis has become one of the primary tools for researchers to explore the influence of independent variables on dependent variables. The Ordinary Least Squares (OLS) method has been a mainstay in conducting this linear regression analysis.

Continue Reading
1 2 Next

Categories

  • Article Publication
  • Assumptions of Linear Regression
  • Comparison Test
  • Correlation Test
  • Data Analysis in R
  • Econometrics
  • Excel Tutorial for Statistics
  • Multiple Linear Regression
  • Nonparametric Statistics
  • Profit Analysis
  • Regression Tutorial using Excel
  • Research Methodology
  • Simple Linear Regression
  • Statistics

Popular Post

September 2025
M T W T F S S
1234567
891011121314
15161718192021
22232425262728
2930  
« Aug    
  • How to Sort Values from Highest to Lowest in Excel
  • How to Perform Descriptive Statistics in Excel in Under 1 Minute
  • How to Tabulate Data Using Pivot Table for Your Research Results
  • Dummy Variables: A Solution for Categorical Variables in OLS Linear Regression
  • The Difference Between Residual and Error in Statistics
Copyright KANDA DATA 2025. All Rights Reserved