KANDA DATA

  • Home
  • About Us
  • Contact
  • Sitemap
  • Privacy Policy
  • Disclaimer
  • Bimbingan Online Kanda Data
Menu
  • Home
  • About Us
  • Contact
  • Sitemap
  • Privacy Policy
  • Disclaimer
  • Bimbingan Online Kanda Data
Home/R programming guide

Tag: R programming guide

How to Perform Residual Normality Analysis in Linear Regression Using R Studio and Interpret the Results

By Kanda Data / Date Nov 11.2024 / Category Data Analysis in R

Residual normality testing is a key assumption check in linear regression analysis using the Ordinary Least Squares (OLS) method. One essential requirement of linear regression is that the residuals should follow a normal distribution. In this article, Kanda Data shares a tutorial on how to perform residual normality analysis in linear regression using R Studio, along with steps to interpret the results.

Continue Reading

Categories

  • Article Publication
  • Assumptions of Linear Regression
  • Comparison Test
  • Correlation Test
  • Data Analysis in R
  • Econometrics
  • Excel Tutorial for Statistics
  • Multiple Linear Regression
  • Nonparametric Statistics
  • Profit Analysis
  • Regression Tutorial using Excel
  • Research Methodology
  • Simple Linear Regression
  • Statistics

Popular Post

February 2026
M T W T F S S
 1
2345678
9101112131415
16171819202122
232425262728  
« Jan    
  • Alternative to the t-test When Data Are Not Normally Distributed
  • When Should Natural Logarithmic Data Transformation Be Applied?
  • Should Data Normality Testing Always Be Performed in Statistical Analysis?
  • Differences in Nominal, Ordinal, Interval, and Ratio Data Measurement Scales for Research
  • Reasons Why the R-Squared Value in Time Series Data Is Higher Than in Cross-Section Data
Copyright KANDA DATA 2026. All Rights Reserved