Tag: residual normality test
Tutorial on R Studio: Testing Residual Normality in Multiple Linear Regression for Time Series Data
The normality test in multiple linear regression analysis is aimed at detecting whether the residuals are normally distributed. In research using time series data, it is also necessary to perform a normality test to ensure that the required assumptions are met.
How to Perform Residual Normality Analysis in Linear Regression Using R Studio and Interpret the Results
Residual normality testing is a key assumption check in linear regression analysis using the Ordinary Least Squares (OLS) method. One essential requirement of linear regression is that the residuals should follow a normal distribution. In this article, Kanda Data shares a tutorial on how to perform residual normality analysis in linear regression using R Studio, along with steps to interpret the results.