KANDA DATA

  • Home
  • About Us
  • Contact
  • Sitemap
  • Privacy Policy
  • Disclaimer
  • Bimbingan Online Kanda Data
Menu
  • Home
  • About Us
  • Contact
  • Sitemap
  • Privacy Policy
  • Disclaimer
  • Bimbingan Online Kanda Data
Home/Statistical Assumptions

Tag: Statistical Assumptions

Multiple Linear Regression

Multicollinearity Test in Multiple Linear Regression Analysis

By Kanda Data / Date May 09.2024

In multiple linear regression analysis, there is an assumption that the model constructed is not affected by multicollinearity issues, where two or more independent variables are strongly correlated. Multicollinearity can lead to errors in parameter estimation and reduce the reliability of the model.

Continue Reading
Multiple Linear Regression

Assumption of Residual Normality in Regression Analysis

By Kanda Data / Date May 06.2024

The assumption of residual normality in regression analysis is a crucial foundation that must be met to ensure the attainment of the Best Linear Unbiased Estimator (BLUE). However, often, many researchers face difficulties in understanding this concept thoroughly.

Continue Reading
Assumptions of Linear Regression

When is autocorrelation testing performed in linear regression analysis?

By Kanda Data / Date Apr 24.2024

In regression analysis, researchers must ensure that the constructed model meets several required assumptions. One assumption in ordinary least square linear regression is the absence of autocorrelation in the model’s residuals. Autocorrelation occurs when there is a correlation pattern among the residual values in the regression model.

Continue Reading
Assumptions of Linear Regression

The data that cannot be transformed using natural logarithm (Ln)

By Kanda Data / Date Mar 11.2024

In quantitative data analysis, to ensure unbiased and consistent estimations, it’s important to meet several assumptions required in the conducted tests. However, sometimes, the test results may not meet the desired expectations.

Continue Reading
Statistics

Differences Between Paired Sample T-Test, Independent Sample T-Test, and One-Way ANOVA

By Kanda Data / Date Jan 08.2024

Differential testing is aimed at determining the mean differences in the tested sample groups. In practice, paired sample t-test, independent sample t-test, and one-way ANOVA are often used to test means in more than one sample group.

Continue Reading
Data Analysis in R

Testing and Interpreting Homoscedasticity in Simple Linear Regression with R Studio

By Kanda Data / Date Dec 16.2023

Homoscedasticity is a crucial assumption in ordinary least square (OLS) linear regression analysis. This assumption refers to the consistent variability of regression residuals across all predictor values. Homoscedasticity assumes that the spread of residual regression errors remains relatively constant along the regression line.

Continue Reading

Categories

  • Article Publication
  • Assumptions of Linear Regression
  • Comparison Test
  • Correlation Test
  • Data Analysis in R
  • Econometrics
  • Excel Tutorial for Statistics
  • Multiple Linear Regression
  • Nonparametric Statistics
  • Profit Analysis
  • Regression Tutorial using Excel
  • Research Methodology
  • Simple Linear Regression
  • Statistics

Popular Post

February 2026
M T W T F S S
 1
2345678
9101112131415
16171819202122
232425262728  
« Jan    
  • Alternative to the t-test When Data Are Not Normally Distributed
  • When Should Natural Logarithmic Data Transformation Be Applied?
  • Should Data Normality Testing Always Be Performed in Statistical Analysis?
  • Differences in Nominal, Ordinal, Interval, and Ratio Data Measurement Scales for Research
  • Reasons Why the R-Squared Value in Time Series Data Is Higher Than in Cross-Section Data
Copyright KANDA DATA 2026. All Rights Reserved