Tag: Coefficient of determination
How to Calculate Tolerance Value and Variance Inflation Factor (VIF)
The tolerance value and Variance Inflation Factor (VIF) are important metrics that you can use to detect multicollinearity among independent variables. If we recall the basic theory, multicollinearity testing is an assumption test in the Ordinary Least Squares (OLS) regression method, which aims to ensure that there is no strong correlation between independent variables.
How to Calculate the Variance Inflation Factor (VIF) in a Multicollinearity Test for Regression
In linear regression analysis, to obtain the best linear unbiased estimator, you need to perform a series of assumption tests. One of the assumption tests required in linear regression is the multicollinearity test.
Calculation Formula for the Coefficient of Determination (R Square) in Simple Linear Regression
The coefficient of determination plays a crucial role in regression analysis. It is not surprising that various studies using regression analysis often present the value of the coefficient of determination. Recognizing the importance of this value, Kanda Data will discuss this topic in detail.
Understanding the Importance of the Coefficient of Determination in Linear Regression Analysis
In linear regression analysis, one important parameter often encountered is the coefficient of determination. The value of this coefficient provides an indication of how well the linear regression model can explain the variation in the data.
How to Interpret the Coefficient of Determination (R-squared) in Linear Regression Analysis
The coefficient of determination (R-squared) is a statistical metric used in linear regression analysis to measure how well independent variables explain the dependent variable. It indicates the quality of the linear regression model created in a research study.
Coefficient of Determination and How to Interpret it in Linear Regression Analysis
The coefficient of determination in linear regression analysis is crucial in understanding how well the independent variables explain the dependent variable. In linear regression analysis, the coefficient of determination can come in two forms: the coefficient of determination (R square) and the adjusted coefficient of determination (Adjusted R Square).