KANDA DATA

  • Home
  • About Us
  • Contact
  • Sitemap
  • Privacy Policy
  • Disclaimer
  • Bimbingan Online Kanda Data
Menu
  • Home
  • About Us
  • Contact
  • Sitemap
  • Privacy Policy
  • Disclaimer
  • Bimbingan Online Kanda Data
Home/Archive for

Author: Kanda Data

Multiple Linear Regression

Multicollinearity Test in Multiple Linear Regression Analysis

By Kanda Data / Date May 09.2024

In multiple linear regression analysis, there is an assumption that the model constructed is not affected by multicollinearity issues, where two or more independent variables are strongly correlated. Multicollinearity can lead to errors in parameter estimation and reduce the reliability of the model.

Continue Reading
Multiple Linear Regression

Assumption of Residual Normality in Regression Analysis

By Kanda Data / Date May 06.2024

The assumption of residual normality in regression analysis is a crucial foundation that must be met to ensure the attainment of the Best Linear Unbiased Estimator (BLUE). However, often, many researchers face difficulties in understanding this concept thoroughly.

Continue Reading
Comparison Test

Difference between Paired t-test and Independent t-test

By Kanda Data / Date May 02.2024

A deep understanding of the difference between paired t-test and independent t-test is crucial for researchers. A strong grasp of both methods is key to making informed decisions based on analyzed data. Paired t-test and independent t-test are used to determine the difference in means between two sample groups.

Continue Reading
Multiple Linear Regression

Can regression estimation coefficients have negative values?

By Kanda Data / Date Apr 29.2024

In regression analysis, estimation coefficients are parameters used to understand the influence of independent variables on the dependent variable. However, an interesting question arises: Can regression estimation coefficients have negative values? In this article, Kanda Data will delve into this phenomenon and discuss its practical implications in linear regression analysis using the ordinary least squares method.

Continue Reading
Assumptions of Linear Regression

When is autocorrelation testing performed in linear regression analysis?

By Kanda Data / Date Apr 24.2024

In regression analysis, researchers must ensure that the constructed model meets several required assumptions. One assumption in ordinary least square linear regression is the absence of autocorrelation in the model’s residuals. Autocorrelation occurs when there is a correlation pattern among the residual values in the regression model.

Continue Reading
Nonparametric Statistics

Reasons why Likert scale variables need to undergo validity and reliability testing

By Kanda Data / Date Apr 12.2024

A solid understanding of statistics, I believe, is crucial for researchers to master. Having a good grasp of statistics will lead us to choose the appropriate statistical methods in research.

Continue Reading
Multiple Linear Regression

Understanding the Difference between Residual and Error in Regression Analysis

By Kanda Data / Date Apr 05.2024

When expressing a linear regression equation, the terms residual or error often appear at the end of the equation. But what exactly do residual and error mean? And what is the fundamental difference between the two?

Continue Reading
Econometrics

The Difference Between Simultaneous Equation System Model and Linear Regression Equation

By Kanda Data / Date Mar 29.2024

We might all be familiar with linear regression equations, but how many of us have delved deeper into the simultaneous equation system model? It’s worth noting that the simultaneous equation system model is far more complex than linear regression equations.

Continue Reading
Previous 1 … 9 10 11 12 13 … 32 Next

Categories

  • Article Publication
  • Assumptions of Linear Regression
  • Comparison Test
  • Correlation Test
  • Data Analysis in R
  • Econometrics
  • Excel Tutorial for Statistics
  • Multiple Linear Regression
  • Nonparametric Statistics
  • Profit Analysis
  • Regression Tutorial using Excel
  • Research Methodology
  • Simple Linear Regression
  • Statistics

Popular Post

January 2026
M T W T F S S
 1234
567891011
12131415161718
19202122232425
262728293031  
« Dec    
  • Differences in Nominal, Ordinal, Interval, and Ratio Data Measurement Scales for Research
  • Reasons Why the R-Squared Value in Time Series Data Is Higher Than in Cross-Section Data
  • How to Create a Research Location Map in Excel: District, Province, and Country Maps
  • How to Determine the Minimum Sample Size in Survey Research to Ensure Representativeness
  • Regression Analysis for Binary Categorical Dependent Variables
Copyright KANDA DATA 2026. All Rights Reserved