Category: Data Analysis in R
How to Perform Multiple Linear Regression Analysis on Time Series Data Using R Studio
Multiple linear regression analysis on time series data, along with its assumption tests, can be performed using R Studio. In a previous article, I explained how to conduct multiple linear regression analysis and assumption tests for cross-sectional data.
How to Perform Multiple Linear Regression Analysis Using R Studio: A Complete Guide
Multiple linear regression analysis requires commands to be executed in R Studio. Given the importance of understanding how to analyze and interpret multiple linear regression using R Studio, Kanda Data will write an article discussing this topic.
Testing and Interpreting Homoscedasticity in Simple Linear Regression with R Studio
Homoscedasticity is a crucial assumption in ordinary least square (OLS) linear regression analysis. This assumption refers to the consistent variability of regression residuals across all predictor values. Homoscedasticity assumes that the spread of residual regression errors remains relatively constant along the regression line.
How to Conduct a Normality Test in Simple Linear Regression Analysis Using R Studio and How to Interpret the Results
The Ordinary Least Squares (OLS) method in simple linear regression analysis is a statistical technique aimed at understanding the influence of an independent variable on a dependent variable. In simple linear regression, there is only one dependent variable and one independent variable.
Simple Linear Regression Analysis Using R Studio and How to Interpret It
In the real world, accurate decisions need to be based on a deep understanding of data. One tool for processing and elaborating data is simple linear regression analysis. Simple linear regression analysis allows us to read patterns among scattered data points. A correct understanding of regression analysis gives us the power to make more accurate decisions and minimize uncertainty.
How to Test for Normality in Linear Regression Analysis Using R Studio
Testing for normality in linear regression analysis is a crucial part of inferential method assumptions, requiring regression residuals to be normally distributed. Residuals are the differences between observed values and those predicted by the linear regression model.
How to Test Normality of Residuals in Linear Regression and Interpretation in R (Part 4)
The normality test of residuals is one of the assumptions required in the multiple linear regression analysis using the ordinary least square (OLS) method. The normality test of residuals is aimed to ensure that the residuals are normally distributed.
How to Test Heteroscedasticity in Linear Regression and Interpretation in R (Part 3)
One of the assumptions required in Ordinary Least Squares (OLS) linear regression is that the variance of the residuals is constant. This assumption is often referred to as the homoscedasticity assumption. Some researchers are more familiar with the term heteroscedasticity test.