KANDA DATA

  • Home
  • About Us
  • Contact
  • Sitemap
  • Privacy Policy
  • Disclaimer
  • Bimbingan Online Kanda Data
Menu
  • Home
  • About Us
  • Contact
  • Sitemap
  • Privacy Policy
  • Disclaimer
  • Bimbingan Online Kanda Data
Home/Archive for

Author: Kanda Data

Statistics

How to Differentiate between Nominal, Ordinal, Interval, and Ratio Data Measurement Scales in Research

By Kanda Data / Date Jun 03.2023

In statistics, data measurement scales can be divided into four types: nominal, ordinal, interval, and ratio scales. Understanding the differences among these four measurement scales is crucial for researchers to grasp. This is because the choice of data analysis in research is heavily influenced by the measurement scale of the variables, whether they are nominal, ordinal, interval, or ratio scales.

Continue Reading
Nonparametric Statistics

Descriptive Statistical Analysis of Non-Parametric Variables (Nominal and Ordinal Scales)

By Kanda Data / Date May 31.2023

Based on its methods, statistics can be divided into descriptive statistics and inferential statistics. Researchers can choose to use either of these methods or even combine both methods of data analysis.

Continue Reading
Nonparametric Statistics

Wilcoxon Test | Different test of two paired samples for non-parametric variables

By Kanda Data / Date May 21.2023

Differences test is one of the most commonly used associative tests by researchers. Differences test can be conducted on both parametric and non-parametric variables. For parametric variables, the differences test can utilize the t-test assuming normally distributed data.

Continue Reading
Nonparametric Statistics

Mann-Whitney Test | Different test of two independent samples for non-parametric variables

By Kanda Data / Date May 14.2023

In statistics, the association tests commonly conducted by researchers consist of tests of influence, relationship, and difference. Researchers often use the t-test to examine the mean difference between two sample groups. Typically, the measurement scale used in the t-test is the interval and ratio scales, which are normally distributed.

Continue Reading
Data Analysis in R

How to Test Normality of Residuals in Linear Regression and Interpretation in R (Part 4)

By Kanda Data / Date May 07.2023

The normality test of residuals is one of the assumptions required in the multiple linear regression analysis using the ordinary least square (OLS) method. The normality test of residuals is aimed to ensure that the residuals are normally distributed.

Continue Reading
Data Analysis in R

How to Test Heteroscedasticity in Linear Regression and Interpretation in R (Part 3)

By Kanda Data / Date Apr 30.2023

One of the assumptions required in Ordinary Least Squares (OLS) linear regression is that the variance of the residuals is constant. This assumption is often referred to as the homoscedasticity assumption. Some researchers are more familiar with the term heteroscedasticity test.

Continue Reading
Data Analysis in R

How to Analyze Multicollinearity in Linear Regression and its Interpretation in R (Part 2)

By Kanda Data / Date Apr 17.2023

Non-multicollinearity is one of the assumptions required in the ordinary least square (OLS) method of linear regression analysis. Non-multicollinearity assumption implies that there is no strong correlation among the independent variables in the equation.

Continue Reading
Data Analysis in R

How to Analyze Multiple Linear Regression and Interpretation in R (Part 1)

By Kanda Data / Date Apr 11.2023

Multiple linear regression analysis has been widely used by researchers to analyze the influence of independent variables on dependent variables. There are many tools that researchers can use to analyze multiple linear regression.

Continue Reading
Previous 1 … 17 18 19 20 21 … 31 Next

Categories

  • Article Publication
  • Assumptions of Linear Regression
  • Comparison Test
  • Correlation Test
  • Data Analysis in R
  • Econometrics
  • Excel Tutorial for Statistics
  • Multiple Linear Regression
  • Nonparametric Statistics
  • Profit Analysis
  • Regression Tutorial using Excel
  • Research Methodology
  • Simple Linear Regression
  • Statistics

Popular Post

October 2025
M T W T F S S
 12345
6789101112
13141516171819
20212223242526
2728293031  
« Sep    
  • How to Create a Research Location Map in Excel: District, Province, and Country Maps
  • How to Determine the Minimum Sample Size in Survey Research to Ensure Representativeness
  • Regression Analysis for Binary Categorical Dependent Variables
  • How to Sort Values from Highest to Lowest in Excel
  • How to Perform Descriptive Statistics in Excel in Under 1 Minute
Copyright KANDA DATA 2025. All Rights Reserved