KANDA DATA

  • Home
  • About Us
  • Contact
  • Sitemap
  • Privacy Policy
  • Disclaimer
  • Bimbingan Online Kanda Data
Menu
  • Home
  • About Us
  • Contact
  • Sitemap
  • Privacy Policy
  • Disclaimer
  • Bimbingan Online Kanda Data
Home/variance inflation factor

Tag: variance inflation factor

How to Calculate Tolerance Value and Variance Inflation Factor (VIF)

By Kanda Data / Date Feb 10.2025 / Category Assumptions of Linear Regression

The tolerance value and Variance Inflation Factor (VIF) are important metrics that you can use to detect multicollinearity among independent variables. If we recall the basic theory, multicollinearity testing is an assumption test in the Ordinary Least Squares (OLS) regression method, which aims to ensure that there is no strong correlation between independent variables.

Continue Reading

How to Calculate the Variance Inflation Factor (VIF) in a Multicollinearity Test for Regression

By Kanda Data / Date Jan 29.2025 / Category Assumptions of Linear Regression

In linear regression analysis, to obtain the best linear unbiased estimator, you need to perform a series of assumption tests. One of the assumption tests required in linear regression is the multicollinearity test.

Continue Reading

Differences in Assumptions of Normality, Heteroscedasticity, and Multicollinearity in Linear Regression Analysis

By Kanda Data / Date Dec 30.2024 / Category Assumptions of Linear Regression

If you analyze research data using linear regression, it is crucial to understand the required assumptions. Understanding these assumption tests is essential to ensure consistent and unbiased analysis results.

Continue Reading

How to Analyze Multicollinearity in Linear Regression Using R Studio

By Kanda Data / Date Nov 25.2024 / Category Data Analysis in R

In linear regression analysis using the Ordinary Least Square method, it is necessary to ensure that there is no strong correlation between independent variables. To obtain the best linear unbiased estimator, there must not be a strong correlation between the independent variables.

Continue Reading
Multiple Linear Regression

Multicollinearity Test in Multiple Linear Regression Analysis

By Kanda Data / Date May 09.2024

In multiple linear regression analysis, there is an assumption that the model constructed is not affected by multicollinearity issues, where two or more independent variables are strongly correlated. Multicollinearity can lead to errors in parameter estimation and reduce the reliability of the model.

Continue Reading
Assumptions of Linear Regression

Multicollinearity Test using Variance Inflation Factor (VIF) in SPSS

By Kanda Data / Date Mar 25.2022

Multicollinearity detection is one of the assumption tests that must be performed on multiple linear regression. This assumption test was conducted to obtain the best linear unbiased estimator.

Continue Reading
Assumptions of Linear Regression

Non-Multicollinearity Test in Multiple Linear Regression

By Kanda Data / Date Dec 29.2021

When analyzing data using linear regression using the Ordinary Least Square (OLS) method, it takes an understanding of the assumption test that must be passed. The non-multicollinearity test is necessary to get the best linear unbiased estimator. The multiple linear regression OLS method has been widely applied in various fields: economics, agribusiness, and socio-economic fields. The estimation of the output of this linear regression has many benefits. Various research problems can be solved with this analytical approach. When we choose to use regression analysis, we are trying to see the influence or impact of one or more variables on other variables. Therefore, many researchers, lecturers, students, and practitioners choose linear regression using the OLS method as a data analysis tool.

Continue Reading

Categories

  • Article Publication
  • Assumptions of Linear Regression
  • Comparison Test
  • Correlation Test
  • Data Analysis in R
  • Econometrics
  • Excel Tutorial for Statistics
  • Multiple Linear Regression
  • Nonparametric Statistics
  • Profit Analysis
  • Regression Tutorial using Excel
  • Research Methodology
  • Simple Linear Regression
  • Statistics

Popular Post

October 2025
M T W T F S S
 12345
6789101112
13141516171819
20212223242526
2728293031  
« Sep    
  • How to Create a Research Location Map in Excel: District, Province, and Country Maps
  • How to Determine the Minimum Sample Size in Survey Research to Ensure Representativeness
  • Regression Analysis for Binary Categorical Dependent Variables
  • How to Sort Values from Highest to Lowest in Excel
  • How to Perform Descriptive Statistics in Excel in Under 1 Minute
Copyright KANDA DATA 2025. All Rights Reserved